Eolico. Il posto è quello giusto? – Greentoday.it
Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Eolico. Il posto è quello giusto?

Eolico. Il posto è quello giusto?
Eolico. Il posto è quello giusto?

Il vento è una risorsa energetica importante. Ma per sfruttarlo serve un attento calcolo delle sue potenzialità per definire precisamente localizzazione e struttura degli impianti eolici. Un importante contributo in tal senso arriva  da Giovanni Gualtieri dell’Istituto di biometeorologia del Consiglio nazionale delle ricerche (Ibimet-Cnr) di Firenze, con lo studio ‘Surface turbulence intensity as a predictor of extrapolated wind resource to the turbine hub height’ pubblicato su Renewable Energy.
“L’intensità di turbolenza (I) di un sito è data dal rapporto tra la deviazione standard della velocità del vento (su) e il valore medio della velocità del vento (v), cioè dalla misura di quanto il valore istantaneo di v si discosti da quello medio”, spiega Gualtieri. “In campo eolico è un parametro fortemente critico, in quanto al suo aumentare crescono anche: i carichi sulle turbine, che ne riducono il ciclo di vita, le perdite dell’energia prodotta e l’incertezza nella stima della produttività. Non a caso, tra i requisiti costruttivi cui le turbine in commercio devono ottemperare secondo le norme europee, uno dei più importanti è proprio la resistenza all’intensità di turbolenza del sito a cui sono destinate”.

Con la ricerca dell’Ibimet-Cnr questo parametro – per la prima volta in campo eolico – è stato invece trattato come un fattore ‘positivo’. “Processando due anni di dati (2012–2013) della torre anemometrica di Cabauw (Olanda) ad altezze comprese tra 10 e 80 m, I è risultata fortemente correlata all’esponente del ‘wind shear’, cioè al profilo verticale della velocità del vento”, prosegue il ricercatore. “C’è da considerare che, mentre il ‘wind shear’ richiede misure fino ad altezze anche superiori ad 80-100 metri, l’intensità di turbolenza è un dato di superficie per il quale sono sufficienti misure a 10-20 m. In sostanza, il risultato del nostro lavoro consiste nel prevedere l’andamento a quote difficilmente raggiungibili con strumentazione dai costi contenuti a partire da semplici misure a terra: un vantaggio evidente, in fase di progettazione di un impianto eolico”.
Il metodo proposto ha fornito buoni risultati nel calcolo sia della velocità del vento (v) sia della densità di potenza (P). “Applicato tra i 10 e gli 80 m, il metodo ha rivelato errori compresi tra il 4 e 7% per v, e tra il 3 e l’8% per P”, conclude Gualtieri. “Su una gamma di 15 aerogeneratori tra quelli disponibili in commercio con altezze del mozzo dell’ordine di 40 m, ha fornito un errore nella stima della producibilità energetica tra il 4.1 e il 6.2%. Su un set più ampio di 40 turbine con altezze del mozzo a 80 m, l’errore è risultato compreso tra il 6.2 e il 14.5%. Si tratta di risultati di grande interesse a livello applicativo, progettuale ed industriale”.

Lascia un commento

Your email address will not be published.

- Advertisement -